

25th National Award for "Excellence in Energy Management – 2024"

Kirloskar Oil Engines Ltd., Kagal-Kolhapur

Presented by-

VM Deshpande-Sr. GM Maintenance and Utilities

SP Parab-Sr. Manager-Utilities

NN Kulkarni-Corporate Energy Manager

Content of the presentation

Company profile

Specific Energy Consumption (Last 3 years FY 21-22 to FY 23-24)

Information of Competitors, National and Global Benchmarks

Energy Saving Projects implemented in last 3 years

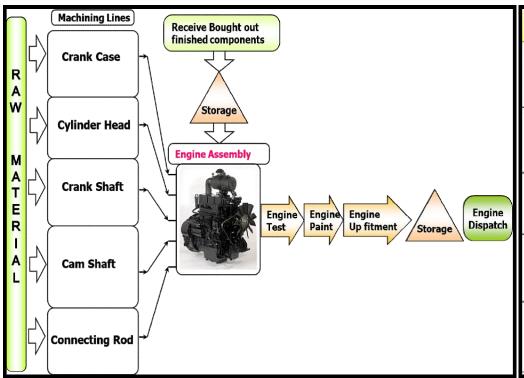
Innovative projects implemented 2022-23

Utilization of Renewable energy sources

Waste utilization and Management

GHG Inventorisation

Green Supply Chain Management


EMS system and other requirements

Net zero commitment

Learning from CII Energy Award or any other award program

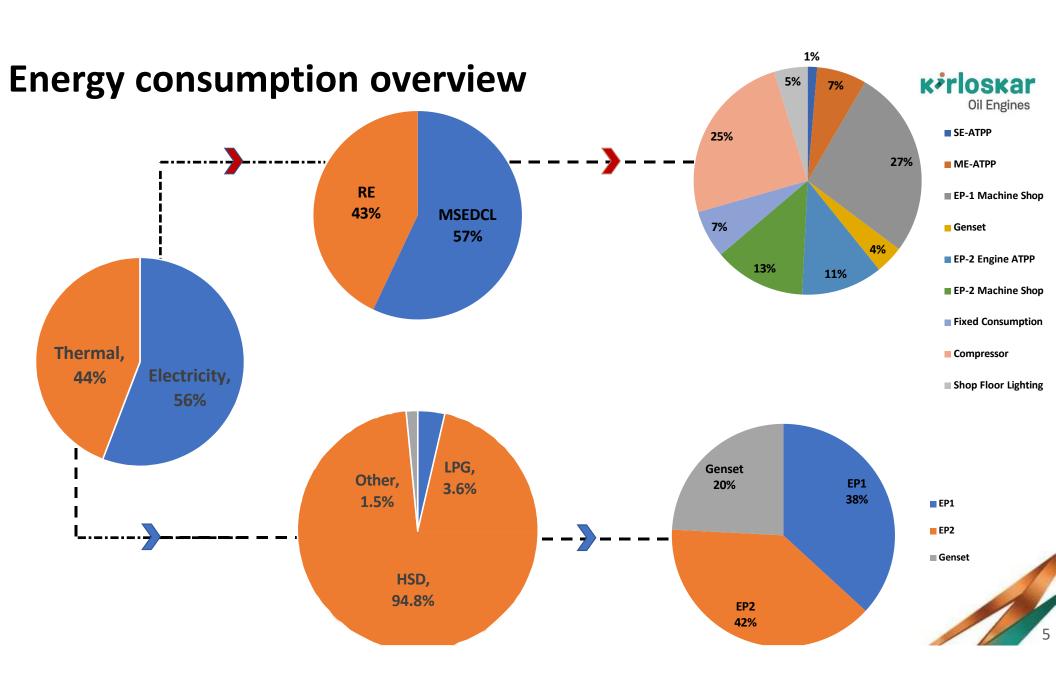
Company profile

Product	Product Name	Capacities (2 Shifts Basis)	Range	Application
	Generating Sets with air cooled and liquid cooled engines	1650 / month	5 KVA to 1010 KVA	Power Generation
	DV Engine with 8, 10 and 12 Cylinders	200 / Month	400 HP to 750 HP	- B
	Liquid Cooled with 1,2,3,4 and 6 Cylinder Engines	4000 / month	14 HP to 330 HP	- 100 miles
	Air Cooled with 1,2,3,4,5 and 6 Cylinder Engines	4000 / month	10 HP to 120 HP	Se Car
	Varsha Pump sets	8000 / month	3.2 HP to 5 HP @ 1500, 1800 & 2600 rpm	Agriculture

Incorporated in 1946 as a part of the Kirloskar Group of Companies, Kirloskar Oil Engines Ltd. is an engineering conglomerate, founded by the late Mr. Laxmanrao Kirloskar.

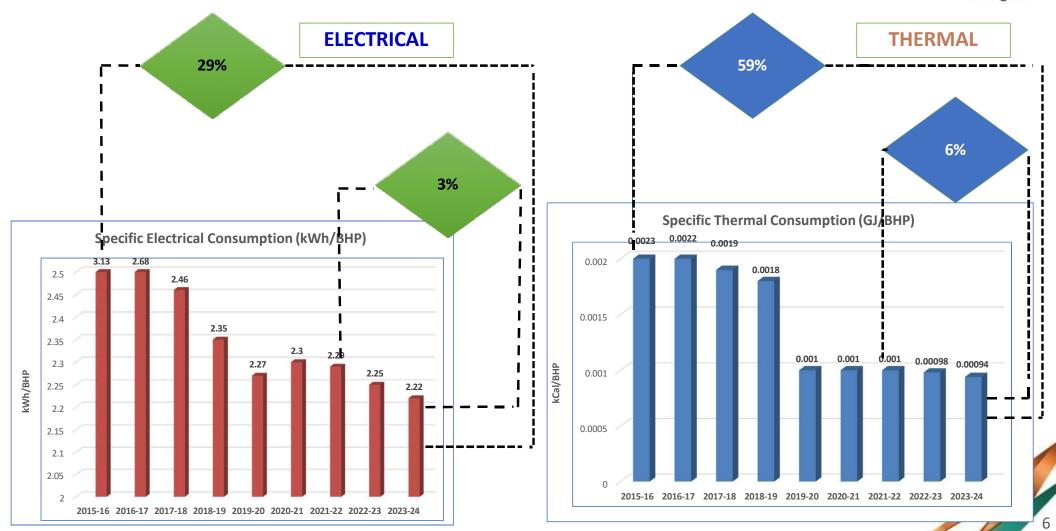
1. Kagal

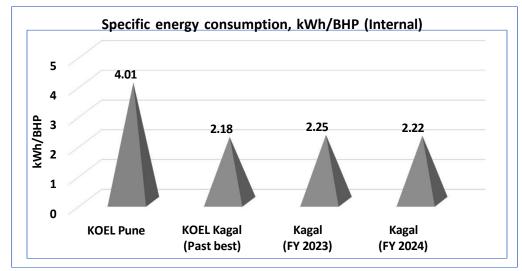
3. Nashik

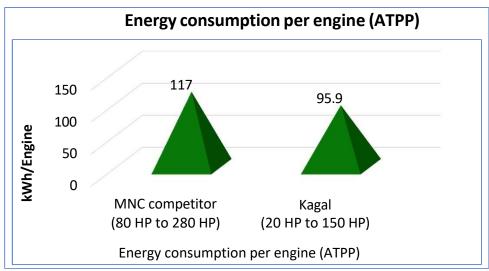

2. Khadki

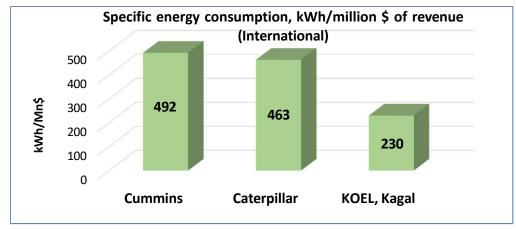
4. Bhare

Company profile




Sp. Energy consumption-Performance





Information of Competitors, National and Global Benchmarks

Energy Saving projects implemented in last three years kirloskar

Category of projects implemented	No. of projects	Units saving In lakh kWh	Fuel saving lakh Kcal	Cost saving in Rs. lakhs	Investment in Rs. Lakhs
Low Investment	141	21.7	535.5	212.1	0
Moderate Investment	19	2.1	0.6	59.9	16.6
High Investment	8	75.82	0	738.9	3064.4
Total	168	99.62	536.1	1010.9	3081

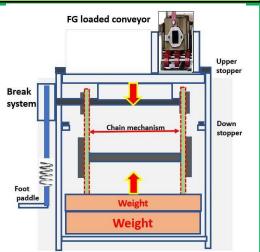
Innovative projects

1. Elimination of usage of compressed air through Karakuri kaizen

Plant / Office Location: (WHERE) Name of Contact Person & Contact Details: (WHO) SBU: Kagal Plant Department: **EP-2 Machine shop** Mr. Umesh D Kumbhar (9011017617) **R810 Cylinder head line**

Name / Title of the Practices: (WHAT) Purpose of the Practices: (WHY)

Powerless out put components handling conveyor | ZERO Energy management system for handing of FG cylinder heads 15 July 2023


Description of Initiative's/Practices: (HOW) Process Flow / Schematic Diagram / Before & After Photos :- Elimination of pneumatic cylinder by providing POWERLESS

concept with Gravity-Weight-Break mechanism through KARAKURI kaizen under the ZERO energy management system

BEFORE - Operator use pneumatic system to lift down FG cyl heads on out put conveyer & lift up the empty FG try to align with output conveyer for handling of FG cyl heads

AFTER - Powerless easily hand operated Gravity -weight - break mechanism conveyer established for handling FG cylinder heads FG loaded conveyor

Completion Date: (WHEN)

Results Achievement: -Total Rs 4.17 Lakhs Power cost saved per annum

Innovative projects

2. Solar operated battery charging station

Results:

- ✓ System designed capacity 15 kWp@ 64 kWh per day
- ✓ Inverter capacity 15 kVA.
- ✓ Two forklift charge at a time
- ✓ Carbon offset -15 tons/annum

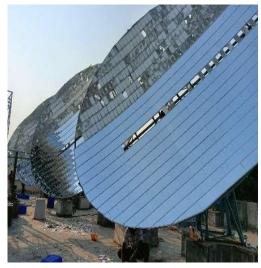
Innovative projects

3. Installation of 30 kW Windmills

Results:

- ✓ Capacity- 5.1kW
- ✓ Qty- 6 Nos.
- ✓ Approx. unit generation average 43200kWh/ Year
- ✓ Annual cost benefit Rs- 432000/year
- ✓ Carbon offset -40 tons/year

Utilization of Renewable energy resources



- Captive Solar Power Plant-8.18 MWp
- Micro wind turbines- 30kWp
- Solar Battery Charging station-15kWp
- Solar Steam generator (Parabola)- 350 kgs/day
- ❖ Biogas and generator- 300kgs/day and 12 KVA
- Solar Pumping system-15kW
- ❖ Solar street lights-400 nos.
- Solar hot water generator-1500 ltrs/day
- **❖** E- buggy & E- bike for internal movement
- Installation of organic waste converter

Utilization of Renewable energy resources

Source	Mechanism	2021-22	2022-23	2023-24
Captive solar Plant (8.2MWp)	On-site	5805352	6925381	9024083
Third party OA	Off-site	0	0	403646
% Share of RE	WRT baseline consumption	32%	38%	52%

Even after stringent Government norms, KOEL managed to avail third party energy purchase under open access mechanism.

This has resulted into saving of Rs.6.87 Cr.

Waste utilization and Management

Type of waste	Source of generation	Destination of disposal
Paint Sludge (MT/Yr.)	Paint Booths	CHWTSDF/Authorised recycler
ETP sludge (MT/Y)	ETP/STP	CHWTSDF
Phosphate Sludge (MT/Yr.)	Genset pretreatment	CHWTSDF
Waste Powder, Rockwool, Waste Glass tissue paper	Genset	CHWTSDF
Waste and Used oils (KL/Y)	Engine Testing, Coolant Preparation, Maintenance, Material Handling	CHWTSDF/Authorised recycler
Used/ Scrap Batteries (Kg/Y)	Material Handling Equipment's	Authorised Recycler
Kitchen/food waste	Factory	Biogas plant, Bio- methanation, Biogas generator
Wooden Scrap (MT)	Engine packing	Authorised Vendor
Rubber /Plastic (MT)	Engine packing	Authorised Vendor, Waste plastic to fuel plant
Grinding Dust (MT)	Grinding Operations machine shop	Authorised Vendor

					Oli Linglines
S.No	Type of Hazardous Waste	Quantity FY	Quantity FY	Quantity FY	
		2021-22	2022-23	2023-24	Units
1	Used/ Spent Oil, Waste Oil	201.18	243.575	280.35	KL/A
2	Oil Soaked cotton waste	31.54	43.89	55.24	MTA
3	Wastes or residues containing oil	12.24	0.00	0.00	MTA
4	Phosphate sludge	9.32	8.43	6.4	MTA
5	Contaminated Sludge	0.03	0.06	0.07	MTA
6	Paint Sludge	82.73	75.92	87.69	MTA
7	Waste Epoxy powder	9.97	7.11	8.08	MTA
8	Waste Rockwool/glass tissue paper	5.33	6.84	5.11	MTA
9	Discarded liners contaminated with powder	0.00	0.00	0.00	MTA
10	Grinding Wheels	0.48	2.00	1.15	MTA
11	Waste softner resins	0.00	0.22	0.0	MTA
12	Discarded contaminated drums, empty aerosol bottles	11150.00	11616.00	13764.00	Nos/A
13	ETP sludge	62.57	47.18	56.16	MTA
14	Lead acid batteries	8.07	4.09	3.95	MT/A
15	Used Tubelights/Bulbs	0.39	0.21	0.29	MTA
16	E-Waste	1.88	1.49	0.0	MTA

Waste utilization and Management

Sr. No.	Name of Waste Utilized	FY 2022-23	FY 2023-24	UOM
1	Used Oil	160.09	243.5	KL/A
2	Bio-methane from waste food	7058.28	5537	m3/A
3	Fuel from plastic waste	5.3	10.2	KL/A
4	Organic compost from OWC	1.708	4.4	T/A

Use of Plastic fuel for burners and material handling equipment

Use of Bio-methane for electricity generation

GHG Inventorization

Carbon Foot Print Report Data - Kagal-1 Plant									
Sr. No.	Source	Scope	Unit		Consumption		GHG	tco2)	
				FY21-22	FY22-23	FY23-24	FY21-22	FY22-23	FY23-24
1	HSD	1	kl	1,348.00	1,642.00	1,635.00	3,539.31	4,219.94	4,201.95
2	LPG	1	kg	1,90,285.00	1,86,552.00	43,500.50	570.86	546.60	127.46
3	FO	1	kl	73.14	-	-	217.88	-	_
4	Compact Natural Gas (CNG)	1	SCM	-	-	1,79,743.00	1	1	338.81
5	CO2 for cutting	1	kg	-	-	-	-	-	
6	CO2 for welding	1	kg	-	-	-	-	-	
7	CO2 in fire extinguisher	1	kg	-	_	-	-	-	
			Total Scope	1 =	4,328	4,767	4,668		
	Scope 2								
1	Electricity Purchased	2	kWh	1,12,23,809	1,26,26,398	1,25,02,586	10,241	10,354	10,252
			Total Scope 2 =				10,241	10,354	10,252
	Offset								
1	Electricity Renewable		kWh	58,05,352	69,25,379	94,27,729	5,297	5,679	7,731
2	Biogas		m3	3,713	6,171	5,537	7	12	10
3	Solar		kg of steam	3,506	-	9,589	0.00	-	1.94

GHG Inventorization

GHG Emission Sources - Scope1

LPG

 LPG Bank used for process

Fork Lifts – HSD Consumption for internal material handling

HSD & FO DG sets

Engine test beds – test beds at ME,SE,HHP ATPP & GENSET shop consumes HSD during testing of engines

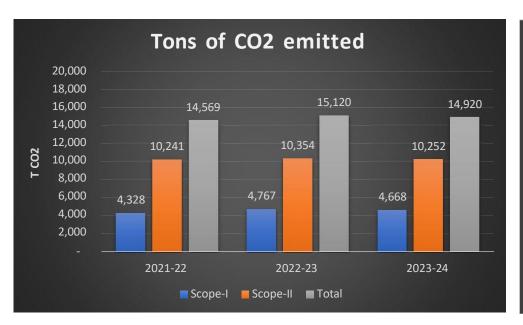
CO2 fire extinguishers

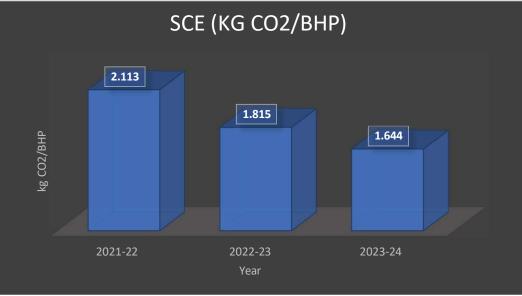
GHG Emission Sources- Scope 2

GHG Emission Sources - Scope3

Employee commute to workplace Transportation of employees between their homes and their worksites – 49 and 27 seater buses Employee business travel (Data of cabs booked through company, flights, rail etc.)

T&D losses (for electricity purchased)

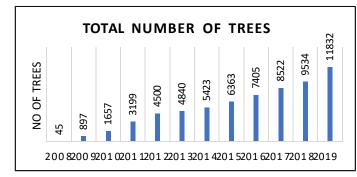




GHG Inventorization

Location	Tons of CC	02 emitted		ВНР	kgs of CO2 emitted/BHP					
	FY 22-23	′ 22-23		FY 23-24	FY 22-23	Reduction				
Kagal	15120	14920	FY 22-23 83,29,536	90,74,399	1.82	FY 23-24 1.64	9%			

GHG Inventorization - Initiatives



Total Carbon Stock in trees of KOEL, Kagal campus is 61.47 tons.

Carbon sequestered through vegetation is 1.22 tons per year.

Recommendations from Carbon Sequestration study:-

Key indigenous species such as Ficus religiosa (Pimpal), Ficus benghaensis (Vad), F.racemosa (Umbar), Tamarindus indica (Chinch) will help sequestering more amount of carbons in future.

Carbon Sequestration Study

Green supply management

Make or Buy

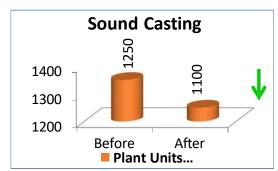
- Decision on Product Platform
- Outsourcing of Components
- Sub Contracting
- Finished parts
- O/S of Products
- O/S of In House Parts

Supplier Base

- Location
- Certification
- Infrastructure
- Technology
- Payment Terms
- Freight
- After Market

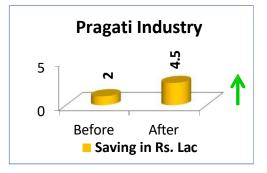
Supplier Quality

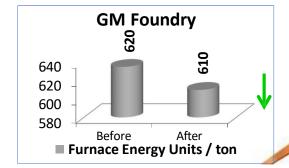
- PPM reduction
- Supplier Processes Improvements
- Process and Product Audits
- PPAP approvals


SCM Policy

Supplier Engagement

- Supplier Conference
- Quarterly Communication
- Monthly Score Card
- Supplier Training
- Supplier SurveyQuality Contest

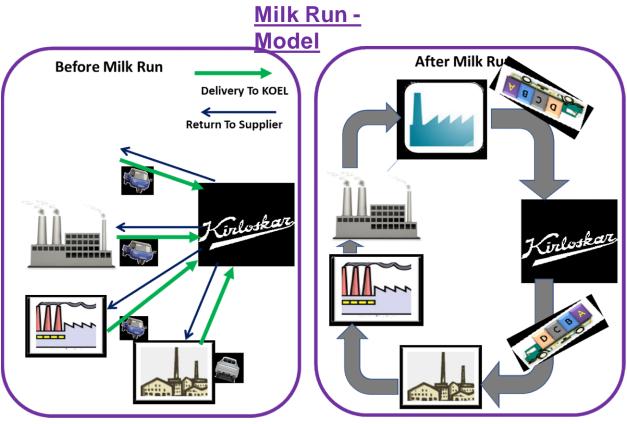

Commodity Strategy


- Industry Analysis
- Commodity Source
 Plan
- Dual Sourcing
- Supplier
 Rationalization
- Risk Mitigation & Financial Analysis

- KOEL Investment
- Amortization
- Capitalization
- Upkeep & Maintenance
- Price Approval Process
- 8 Levers of Cost Reduction
- Capturing Cost Reduction
- Material Planning
- Ordering
- TOC-Consumption based Procurement
- Material Handling
- Packaging
- Milk Run

- Requirements at Supplier end
- OSHAS compliance
- Child Labour
- Hazardous Material Handling
- Waste Disposal

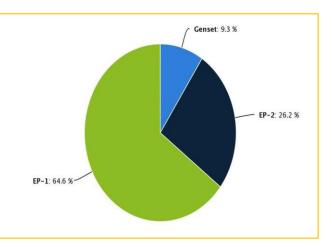
37

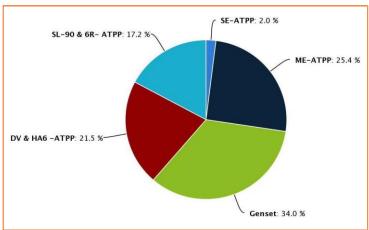

-21

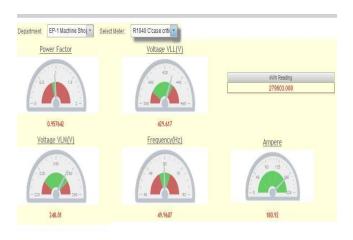
Green supply management

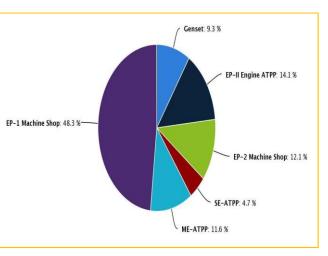


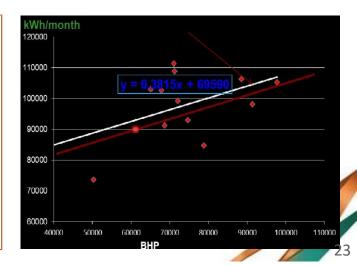
- ➤ Earlier Traffic Incoming Avg. 77 vehicle entries/day. Aprox. 21% reduction
- ➤ Earlier Avg. monthly Diesel
 Consumption 2200 ltrs. Approx.
 12% reduction
- Reduction Freight Payment by 4.13 Crs in last three years. - Avg. 13.8 % reduction per year.
- ➤ Advance information Proactive alerts.
- > Reduced personal visits.
- Defined accountability & Responsibility.
- > Improved relationship.



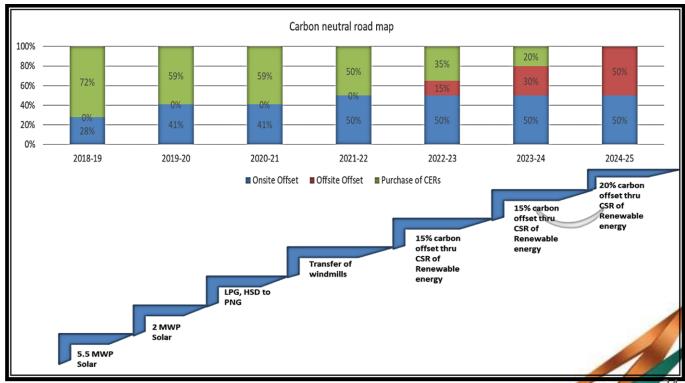

EMS system and Other requirements




Data Analysis from EMS system

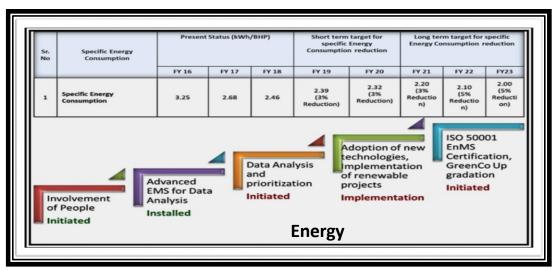


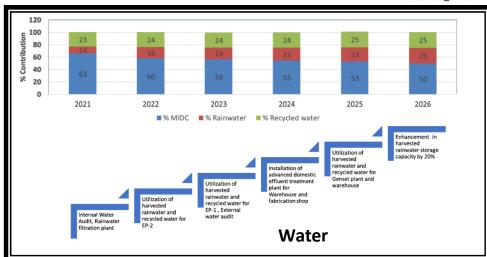
Net zero and Roadmap

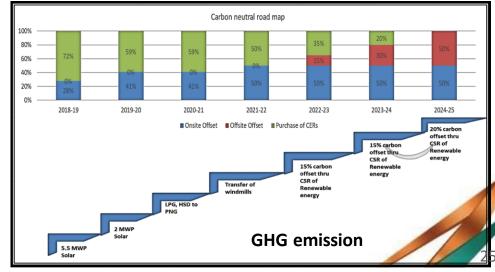

K*rloskar Oil Engines

- Net zero commitment year- 2030
- □ EP-100 commitment-Implementation of EnMS (ISO 50001:2018) by 2024, Double energy productivity

KOEL Kagal certified carbon neutral operations for 2018-19




Kirloskar Oil Engines Limited (KOEL) is a leading engineering conglomerate, manufacturing internal combustion engines, generating sets and parts. Its largest manufacturing plant in Kagal, Kolhapur has been certified for carbon neutral operations in 2018-19 as per PAS 2060. Publically Available Specifications, PAS 2060 by BSI, 'Specification for the demonstration of carbon neutrality' was used to declare a Qualifying Explanatory Statement in consultation with RSM GC Advisory Services. RINA Services S.p.A. has provided

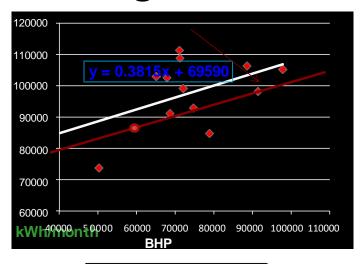

Roadmaps for the future...

Projects to achieve the Target	Units to be substituted in	% Ct-ibti						Status		
	Lakh kWh	Contribution	2018	2019	2020	2021	2022	2023	2024	
5.5MWp Captive Solar Power Plant	75	48								Completed
Installation of Wind ball	0.10	0.10								Completed
Installation of Solar Pumps	0.10	0.10								Completed
Solar Charging system for battery operated vehicles										
Solar steam cooking for central kitchen										
2.16MWp Solar Power Plant	24	27								Completed
Transfer of windmill	12	13								In process
Substitution of Thermal energy with renewable energy	2	2 Por		ahl	o E	nor				In process
		Rer	iew	ab	e E	<u>ner</u>	gy			

Implementation of GreenCo/IGBC/ISO 50001 rating

"GreenCo
Platinum rated
Factory" by
the
Confederation
of Indian
Industry (CII)
in adherence
to its GreenCo
rating system.

"Platinum"
certification
in IGBC
existing
building
certification
category
for Ep- 1
office
building.



Implementation of
EnMS ISO 50001 system
is in process.
Lead AuditorsMr. Nitin Kulkarni
Mr. Santosh Parab

Learnings from various forums

Regression analysis

Target setting and Benchmarking

Technology adoption

Horizontal deployment of best practices

- Green CO and IGBC certification
- National and International benchmarks
- SWOT analysis of Organization

Adoption of new energy efficient technologies-

□Vaayu

■ Axial blowers and

fans

☐ Heat pump

Solar Light pipe

□Optimization in

TAKT time

27

Awards and Accolades

"GreenCo
Platinum rated
Factory" by the
Confederation
of Indian
Industry (CII) in
adherence to its
GreenCo rating
system.

CII's 20th
National Award
for being an
"Excellent
Energy Efficient
Unit" and
"National
Energy Leader"
award. 9
consecutive
years winner at
National level.

"Platinum"
certification in
IGBC existing
building
certification
category for
Ep- 1 office
building.

Achieved carbon neutrality under the guidelines of PAS 2060:2014 for 2018-19.

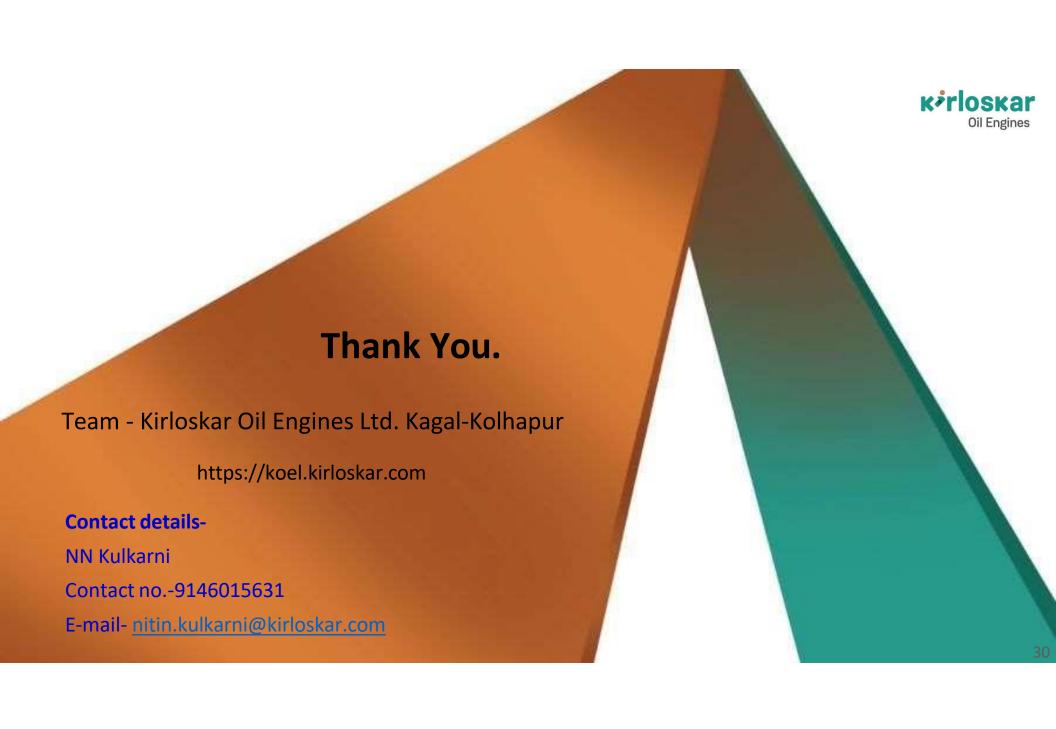
Consecutive 6
years winner at
State Level
energy
conservation
awards by
MEDA

"Noteworthy Water Efficient Unit"
National Level certificate by CII Triveni water Institute CII Water Con Awards 2018.

Awards and Accolades

"Hat-Trick"-Consecutive Three years of winner "Golden Peacock Award for **Energy** Efficiency"

CII SR Award for best practices of rainwater harvesting in water management 2022


Installed and commissioned "Waste plastic to Fuel Conversion plant" with a yield of almost 70%.

Rainwater harvesting structures to utilise rainwater for industrial processes

